切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 264 -269. doi: 10.3877/cma. j. issn.1674-0807.2015.04.008

综述

乳腺癌免疫治疗的研究进展
张欢1, 吴斌1,()   
  1. 1.646000 四川省泸州医学院附属医院乳腺外科
  • 收稿日期:2014-03-14 出版日期:2015-08-01
  • 通信作者: 吴斌

Research progress in immunotherapy for breast cancer

Huan Zhang, Bin Wu()   

  • Received:2014-03-14 Published:2015-08-01
  • Corresponding author: Bin Wu
引用本文:

张欢, 吴斌. 乳腺癌免疫治疗的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2015, 09(04): 264-269.

Huan Zhang, Bin Wu. Research progress in immunotherapy for breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2015, 09(04): 264-269.

[1]
Dillman RO. Cancer immunotherapy [ J]. Cancer Biother Radiopharm,2011,26(1):1-64.
[2]
Page DB, Naidoo J, McArthur HL. Emerging immunotherapy strategies in breast cancer[J]. Immunotherapy, 2014,6(2):195-209.
[3]
Bahl S, Roses RE, Sharma A, et al. Asymptomatic changes in cardiac function can occur in ductal carcinoma-in-situ patients following treatment with HER-2/neu-pulsed dendritic cell vaccines [J].Am J Surg,2009,198(4):488-494.
[4]
Xie Y, Chen Y, Ahmed KA, et al. Potent CD4 + T-cell epitope P30 enhances HER2/neu-engineered dendritic cellinduced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4 + T-cell-stimulated CTL responses[J].Cancer Gene Ther,2013,20(10):590-598.
[5]
Zheng X, Koropatnick J, Chen D, et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model[J]. Int J Cancer,2013,132(4):967-977.
[6]
Ge Y, Xi H, Ju S, et al. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice[J]. Cancer Lett,2013,336(2):253-259.
[7]
Baek S, Kim CS, Kim SB, et al. Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase Ⅰ/Ⅱtrial[J].J Transl Med,2011,9:178.
[8]
Hafid SR, Radhakrishnan AK, Nesaretnam K. Tocotrienols are good adjuvants for developing cancer vaccines [ J]. BMC Cancer,2010,10:5.
[9]
Hamilton E,Blackwell K,Hobeika AC,et al. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition[J].J Transl Med,2012,10:28.
[10]
Gritzapis AD, Fridman A, Perez SA, et al. HER-2/neu (657-665) represents an immunogenic epitope of HER-2/neu oncoprotein with potent antitumor properties [J]. Vaccine,2009,28(1):162-170.
[11]
Mittendorf EA, Clifton GT, Holmes JP, et al. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02[J].Cancer,2012,118(10):2594-2602.
[12]
Gates JD, Clifton GT, Benavides LC, et al. Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class ⅡHER2/neu (AE37) peptide[J]. Vaccine,2010,28(47):7476-7482.
[13]
Carmichael MG, Benavides LC, Holmes JP, et al. Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2)vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04[J].Cancer,2010,116(2):292-301.
[14]
Benavides LC, Sears AK, Gates JD, et al. Comparison of different HER2/neu vaccines in adjuvant breast cancer trials:implications for dosing of peptide vaccines[J]. Expert Rev Vaccines,2011,10(2):201-210.
[15]
Xu M, Kallinteris NL,von Hofe E. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class Ⅱepitope hybrid vaccines [ J]. Vaccine, 2012, 30 (18 ):2805-2810.
[16]
Huang ZH, Shi L, Ma JW, et al. A totally synthetic, selfassembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy [J]. J Am Chem Soc, 2012, 134 (21):8730-8733.
[17]
Pinkhasov J, Alvarez ML, Rigano MM, et al. Recombinant plant-expressed tumour-associated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice[J].Plant Biotechnol J,2011,9(9):991-1001.
[18]
Yuan S, Shi C, Liu L, et al. MUC1-based recombinant Bacillus Calmette-Guerin vaccines as candidates for breast cancer immunotherapy [J]. Expert Opin Biol Ther,2010,10(7):1037-1048.
[19]
Gao Y, Chen X, Gao W, et al. A new purification method for enhancing the immunogenicity of heat shock protein 70-peptide complexes[J].Oncol Rep,2012,28(6):1977-1983.
[20]
de la Torre A, Hernandez J, Ortiz R, et al. NGlycolylGM3/VSSP vaccine in metastatic breast cancer patients: results of phase Ⅰ/Ⅱa clinical trial[J].Breast Cancer (Auckl),2012,6:151-157.
[21]
Foy KC, Wygle RM, Miller MJ, et al. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo[J]. J Immunol,2013,191(1):217-227.
[22]
Hao S,Moyana T,Xiang J. Review:cancer immunotherapy by exosome-based vaccines [ J]. Cancer Biother Radiopharm,2007,22(5):692-703.
[23]
Wang L,Xie Y,Ahmed KA, et al. Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice [J]. Breast Cancer Res Treat,2013,140(2):273-284.
[24]
Wiedermann U, Wiltschke C, Jasinska J, et al. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study [J]. Breast Cancer Res Treat,2010,119(3):673-683.
[25]
Morse MA, Wei J, Hartman Z, et al. Synergism from combined immunologic and pharmacologic inhibition of HER2 in vivo[J].Int J Cancer,2010,126(12):2893-2903.
[26]
Reisfeld RA. The tumor microenvironment: a target for combination therapy of breast cancer[J]. Crit Rev Oncog,2013,18(1-2):115-133.
[27]
Liu Z, Lv D, Liu S, et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine:effect against breast cancer in mice[J].PLoS One,2013,8(4):e60190.
[28]
Liao D, Liu Z, Wrasidlo WJ, et al. Targeted therapeutic remodeling of the tumor microenvironment improves an HER-2 DNA vaccine and prevents recurrence in a murine breast cancer model[J].Cancer Res,2011,71(17):5688-5696.
[29]
Nakashima H, Fujisawa T, Husain SR, et al. Interleukin-13 receptor α2 DNA prime boost vaccine induces tumor immunity in murine tumor models[J].J Transl Med,2010,8:116.
[30]
Pakravan N, Langroudi L, Hajimoradi M, et al. Coadministration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model[J].Cell Stress Chaperones,2010,15(6):977-984.
[31]
Nguyen-Hoai T, Baldenhofer G, Ahmed MS, et al. CCL19( ELC ) improves TH1-polarized immune responses and protective immunity in a murine Her2/neu DNA vaccination model[J].J Gene Med,2012,14(2):128-137.
[32]
Eccles S. c-erbB-2 as a target for immunotherapy[J]. Expert Opin Investig Drugs,1998,7(11):1879-1896.
[33]
程琳,彭媛,王殊.乳腺癌的生物治疗进展[J/CD]. 中华乳腺病杂志:电子版,2013,7(3):160-167.
[34]
Verma S, Miles D, Gianni L,et al. Trastuzumab emtansine for HER2-positive advanced breast cancer [J]. N Engl J Med,2012,367(19):1783-1791.
[35]
Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer[J].N Engl J Med,2011,365(14):1273-1283.
[36]
Pichinuk E, Benhar I, Jacobi O, et al. Antibody targeting of cell-bound MUC1 SEA domain kills tumor cells[J]. Cancer Res,2012,72(13):3324-3336.
[37]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.
[38]
尹令丝,黄俊琼.乳腺癌免疫治疗研究进展[J].临床医学工程,2013,20(2):259-260.
[1] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[2] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[3] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[6] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[7] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[8] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[11] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[12] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[13] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[14] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要